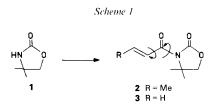
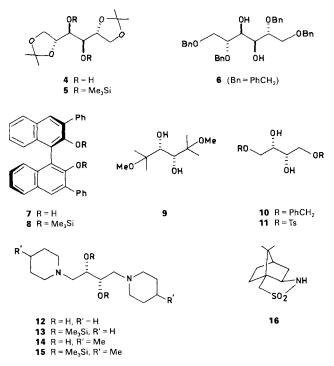
## 51. Asymmetric *Diels-Alder* Reactions of Cyclopentadiene with *N*-Crotonoyl- and *N*-Acryloyl-4,4-dimethyl-1,3-oxazolidin-2-one, Mediated by Chiral *Lewis* Acids


by Christian Chapuis<sup>1</sup>)\* and Janusz Jurczak

Institute of Organic Chemistry, Polish Academy of Sciences, PL-01-224 Warszawa

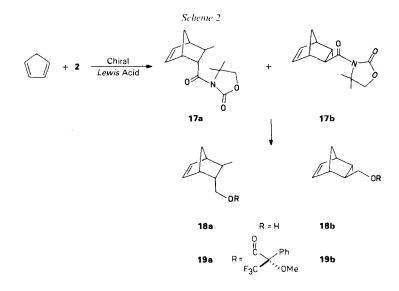
(29. XII. 86)

One-pot *Diels-Alder* reactions of cyclopentadiene with 3-crotonoyl- (2) and 3-acryloyl-4,4-dimethyl-1,3-oxazolidin-2-one (3), mediated by chiral *Lewis* acids, are described. AlCl<sub>3</sub>, EtAlCl<sub>2</sub>, Et<sub>2</sub>AlCl, TiCl<sub>4</sub>, ZrCl<sub>4</sub>, SnCl<sub>4</sub>, SiCl<sub>4</sub>, and BBr<sub>3</sub>, modified with derivatives of D-mannitol, L-tartaric acid, and (*R*)-binaphthol, were applied as chiral promotors. The reaction with dienophile 2, carried out in CH<sub>2</sub>Cl<sub>2</sub> at  $-78^{\circ}$  with high yield, was characterized by excellent  $\pi$ -face selectivity. In case of the reaction with dienophile 3, the efficiency of the chirality transfer was much lower.


Almost complete  $\pi$ -face stereodifferentiation in *Lewis*-acid-catalyzed *Diels-Alder* reactions has recently been achieved applying either chiral diene or chiral dienophile [1]. In contrast to this approach, the use of chiral catalysts offers a unique possibility of inducing chirality to a principally unlimited amount of cycloadduct by a small quantity of catalyst. So far, this exciting field has remained practically unexplored [2]. We resolved to study the influence of chiral *Lewis* acids on the stereochemical course of the *Diels-Alder* reaction of cyclopentadiene with two bidentate dienophiles: 3-crotonoyl- (2) and 3-acryl-oyl-4,4-dimethyl-1,3-oxazolidin-2-one (3), readily available from compound 1 (*Scheme 1*). Very recently, similar investigations have been undertaken by Japanese authors [3].



Compound 2 (m.p. 54–55°) was obtained in quantitative yield from 1 [4] by treatment with BuLi, followed by acylation with crotonoyl chloride [1e]. Likewise, compound 3 (m.p.  $61-62^{\circ}$ ) was obtained in 78% yield from 1 by deprotonation using MeMgBr, followed by acylation with acryloyl chloride [1e].


Dienophiles 2 and 3 were selected because of their potential conformational rigidity. This rigidity was assumed to result from prevention of rotation around the C(O)-N bond, caused by chelation with a *Lewis* acid. Moreover, the C=C bond should be forced

<sup>&</sup>lt;sup>1</sup>) Present address: *Firmenich SA*, 1, rte des Jeunes, CH-1211 Geneva 8.



by the geminal Me groups to adopt *syn*-planar conformation with respect to the chelated carbonyl groups.

Chiral *Lewis* acids were generated *in situ* by addition of  $EtAlCl_2$  or  $Et_2AlCl$  to chiral ligands containing the diol functionality. Alternatively, in case of application of perhalogenated *Lewis* acids, chiral diols protected by Me<sub>3</sub>Si groups were used [5].



Cycloaddition of cyclopentadiene to dienophile 2 was chosen as model reaction for comparison of the effects of various chiral ligands 4–16 on the  $\pi$ -face selectivity (Scheme 2).

A crude, crystalline mixture of the resulting cycloadducts 17a/17b (m.p. 72–74°), separated from chiral ligand by filtration through a short silica-gel column or by simple extraction in case of ligands 12–14, was reduced with LiAlH<sub>4</sub> to afford a mixture of alcohols 18a/18b. The *endo/exo* ratio was determined at this stage using GC. Esterification of a mixture 18a/18b with (-)-(S)- $\alpha$ -methoxy- $\alpha$ -(trifluoromethyl)phenylacetic acid ((-)-MTPA) gave a mixture 19a/19b, applied for the determination of the diastereomeric excess by <sup>19</sup>F-NMR [6]. The results are presented in *Table 1*.

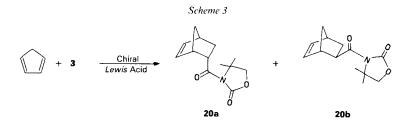
| Entry | <i>Lewis</i><br>acid | Ligand | Dienophile/Lewis acid/Ligand | Yield<br>[%] | endo/exo <sup>b</sup> )<br>Ratio | d.e. <sup>c</sup> )<br>[%] |
|-------|----------------------|--------|------------------------------|--------------|----------------------------------|----------------------------|
| а     | EtAlCl <sub>2</sub>  | 4      | 1:2:1                        | 89           | 75:25                            | 94                         |
| Ь     | AlCl <sub>3</sub>    | 5      | 1:1:1                        | 55           | 88:12                            | 92                         |
| с     | TiCl <sub>4</sub>    | 5      | 1:1:1                        | 86           | 93:7                             | 96                         |
| ď     | Et <sub>2</sub> AlCl | 6      | 1:1:1                        | 5            | 77:23                            | 87                         |
| е     | $EtAlCl_2$           | 6      | 1:2:1                        | 73           | 73:27                            | 92                         |
| ſ     | Et <sub>2</sub> AlCl | 7      | 1:1:1                        | 92           | 68:32                            | 88                         |
| g     | EtAICl <sub>2</sub>  | 7      | 1:2:1                        | 92           | 76:24                            | 95                         |
| h     | TiCl <sub>4</sub>    | 8      | 1:1:1                        | 99           | 94:6                             | > 98                       |
| i     | EtAlCl <sub>2</sub>  | 9      | 1:2:1                        | 90           | 70:30                            | 93                         |
| j     | EtAlCl <sub>2</sub>  | 10     | 1:2:1                        | 71           | 73:27                            | 91                         |
| k     | $EtAlCl_2$           | 11     | 1:2:1                        | 82           | 71:29                            | 97                         |
| 1     | $EtAlCl_2^d$ )       | 11     | 1:2:1                        | 15           | 81:19                            | > 98                       |
| т     | EtAlCl <sub>2</sub>  | 12     | 1:2:1                        | 21           | 91:9                             | 89                         |
| n     | $EtAlCl_2$           | 12     | 1:1:0.5                      | 71           | 84:16                            | 94                         |
| 0     | $EtAlCl_2$           | 16     | 1:1:1                        | 75           | 81:19                            | > 98                       |

 Table 1. Asymmetric Induction in the Reaction of Cyclopentadiene with Dienophile 2 in the Presence of Chiral Lewis Acids<sup>a</sup>)

<sup>a</sup>) Reactions were carried out in  $CH_2Cl_2$  at  $-78^\circ$ .

<sup>b</sup>) endo/exo Ratios were determined by GC with a Hewlett-Packard 5890 unit (Carbowax 20M, 530  $\mu$ ), and were confirmed by the <sup>1</sup>H-NMR spectra (500 MHz) recorded with a Bruker AM-500 spectrometer.

<sup>c)</sup> Diastereomeric excess (d.e.) was determined for (-)-MTPA esters using <sup>19</sup>F-NMR spectrometry. The <sup>19</sup>F-NMR spectra (376.3 MHz) were recorded with a *Varian XL-400* spectrometer. The direction of asymmetric induction was determined by polarimetric measurements of the mixtures **18a/18b**, using a *Perkin-Elmer 141* automatic polarimeter [1d]. In all cases, (*R*)-configuration was induced.


<sup>d</sup>) This reaction was carried out at  $-100^{\circ}$ .

Several aspects of the present findings are noteworthy. A comparison of *Entries b* and c, or f and h showed that chiral titanium catalysts exhibited higher *endo/exo* selectivity as well as  $\pi$ -face selectivity than their aluminium analogues. The very low yield obtained with ligand **6** [7] (*Entry d*) possibly reflects intramolecular chelation by the free-rotating benzyloxy groups. This self-chelation was not observed in the case of ligand **4**, owing to the rigid isopropylidene protection. Therefore, we decided to use 2 equiv. of EtAlCl<sub>2</sub> (*Entry e*) to avoid this self-chelation. On the other hand, it was interesting to compare the results obtained for derivatives of D-mannitol with those to be found for a conformationally rigid ligand. For this purpose, we selected (*R*)-2,2'-dihydroxy-3,3'-diphenyl-1,1'-

binaphthyl (7) [8] for application in the model reaction. When  $EtAlCl_2$  was used as *Lewis* acid, the results obtained for simple derivatives of D-mannitol 4 and 6 were fully comparable with those obtained for 7 (*Entries a* and *e vs. g*). *Entry h* represents the best chiral efficiency with regard to the *endo/exo* ratio.

L- or D-tartaric acids are cheap chiral starting materials, allowing different kinds of functionalization by simple chemical transformations. Ligand 9 [9] readily available from L-tartaric acid was as competitive as the highly elaborated binaphthyl derivative 7 (*Entries g vs. i*) in terms of the yield, *endo/exo* and  $\pi$ -face selectivity. Even more simple ligands, like (S,S)-1,4-dibenzyloxy-2,3-butanediol (10) [10] and commercially available ditosylate 11, exhibited very high chiral efficiency (*Entries j* and k, respectively). Upon lowering of temperature, the *endo/exo* ratio as well as the  $\pi$ -face selectivity were increased (*Entry l*).

(S,S)-1,4-Dipiperidino-2,3-butanediol (12) [11], being advantageous from the practical point of view, since it can be fully recovered by simple extraction without losing optical purity, gave with EtAlCl<sub>2</sub> (2 mol-equiv.) the cycloadduct in low yield (*Entry m*). This drawback was overcome by the use of 1 mol-equiv. of *Lewis* acid (*Entry n*). It is evident that, upon use of 2 equiv. of *Lewis* acid for 1 equiv. of a chiral ligand, in the resulting complex,  $C_2$  symmetry was changed. To prove that preservation of  $C_2$  symmetry is unnecessary for effective asymmetric induction, the non-symmetric compact ligand 16 [1d] was applied. In this case, the chiral complex with EtAlCl<sub>2</sub> afforded in the reaction between cyclopentadiene and dienophile 2 asymmetric induction exceeding 98% (*Entry o*).



| Entry | <i>Lewis</i><br>acid | Ligand | Dienophile/Lewis acid/Ligand | Yield<br>[%] | endo/exo <sup>b</sup> )<br>Ratio | d.e.<br>[%] |
|-------|----------------------|--------|------------------------------|--------------|----------------------------------|-------------|
| a     | EtAlCl <sub>2</sub>  | 12     | 1:2:1                        | 29           | 77:23                            | 36          |
| b     | EtAlCl <sub>2</sub>  | 12     | 1:1:0.5                      | 80           | 83:17                            | 21          |
| с     | EtAlCl <sub>2</sub>  | 12     | 1:0.5:0.25                   | 96           | 81:19                            | 17          |
| d     | SiCl <sub>4</sub>    | 13     | 1:1:0.5                      | 95           | 89:11                            | 21          |
| е     | BBr <sub>3</sub>     | 13     | 1:1:0.5                      | 35           | 86:14                            | 19          |
| f     | EtAlCl <sub>2</sub>  | 14     | 1:1:0.5                      | 84           | 90:10                            | 19          |
| g     | TiCl₄                | 15     | 1:1:0.5                      | 48           | 97:3                             | 29          |
| h     | ZrCl <sub>4</sub>    | 15     | 1:1:0.5                      | 84           | 91:9                             | 26          |
| i     | SnCl <sub>4</sub>    | 15     | 1:1:0.5                      | 82           | 99:1                             | 23          |

 Table 2. Asymmetric Induction in the Reaction of Cyclopentadiene with Dienophile 3 in the Presence of Chiral Lewis Acids<sup>a</sup>)<sup>b</sup>)

<sup>a</sup>) The reactions were carried out in  $CH_2Cl_2$  at  $-78^\circ$ .

b) The *endo/exo* ratio and diastereomeric excess were determined similarly as indicated in *Table 1*. In all cases, (*R*)-configuration was induced.

The results obtained in the reaction of cyclopentadiene with dienophile 3 in the presence of chiral *Lewis* acids, leading to a mixture of cycloadducts  $20a/20b^2$ ) (*Scheme 3*), are recorded in *Table 2*.

Comparison of *Entry n* in *Table 1* with *Entry b* in *Table 2* showed that, under the same experimental conditions, the  $\pi$ -face selectivity was much lower in case of dienophile **3** than **2**. Reduction of the amount of chiral *Lewis* acid relative to that of the dienophile resulted in a drop in the efficiency of chirality transfer (*Entries a-c*). SiCl<sub>4</sub> and BBr<sub>3</sub> (*Entries d* and *e*, respectively) also promoted asymmetric *Diels-Alder* reactions with  $\pi$ -face selectivity comparable to that obtained for Al-containing complexes. An increase in steric hindrance by introduction of Me groups into the chiral ligand 14<sup>3</sup>) did not substantially influence asymmetric induction (*Entries b* and *f*). Ti as compared with Zr, Sn, and Al (*Entries f-i*) showed the highest ability of effective chelation.

The present results open a convenient and efficient route to optically pure cycloadducts which may be used in the synthesis of various natural products. Applications of the present findings in ene reactions and [4+2] cycloadditions with heterodienophiles, which we have taken up and will soon report, seem to be an interesting extension of this field.

The authors wish to thank Dr. *Kjell Ankner (AB Hässle,* Mölndal, Sweden) for recording NMR spectra, Dr. *Tomasz Kościelski* (Institute of Physical Chemistry, Polish Academy of Sciences) for GC measurements, and Dr. *Tomasz Bauer* for preparation of compound **6**. This work was supported by the *Swiss National Science Foundation* and by the *Polish Academy of Sciences* (grant CPBP 01.13).

## REFERENCES

- a) L.A. Paquette, 'Asymmetric Synthesis', Ed. J.D. Morrison, Academic Press, New York, 1984, Vol. 3, Chapt. 4; b) W. Oppolzer, Angew. Chem. Int. Ed. 1984, 23, 876; c) G. Helmchen, R. Karge, J. Weetman, 'Modern Synthetic Methods', Ed. R. Scheffold, Springer Verlag, Berlin-Heidelberg, 1986, Vol. 4, p. 262; d) W. Oppolzer, C. Chapuis, G. Bernardinelli, Helv. Chim. Acta 1984, 67, 1397; e) D.A. Evans, K.T. Chapmann, J. Bisaha, J. Am. Chem. Soc. 1984, 106, 4261.
- [2] a) M. M. Guseinov, I. M. Akhmedov, E. G. Mamedov, Azerb. Khim. Zh. 1976, 46 (CA: 1976, 85, 1769252);
  b) S. Hashimoto, N. Komeshima, K. Koga, J. Chem. Soc., Chem. Commun. 1979, 437; c) E. Kobayashi, S. Matsumura, J. Furukawa, Polym. Bull. 1980, 3, 285; d) M. Bednarski, S. Danishefsky, J. Am. Chem. Soc. 1983, 105, 3716, 6968; e) M. Bednarski, C. Maring, S. Danishefsky, Tetrahedron Lett. 1983, 24, 3451;
  f) T. Ross Kelly, A. Whiting, N.S. Chandrakumar, J. Am. Chem. Soc. 1986, 108, 3510.
- [3] K. Narasaka, M. Inoue, N. Okada, Chem. Lett. 1986, 1109.
- [4] N. Sonoda, G. Yamamoto, K. Natsukawa, K. Kondo, S. Murai, Tetrahedron Lett. 1975, 1969.
- [5] P.A. Bartlett, I. Mori, unpublished results.
- [6] J.A. Dale, D.L. Dull, H.S. Mosher, J. Org. Chem. 1969, 34, 2543.
- [7] H.F.G. Beving, H.B. Boren, P.J. Garegg, Acta Chem. Scand., Ser. A 1967, 21, 2083.
- [8] D.S. Lingenfelter, R.C. Helgeson, D.J. Cram, J. Org. Chem. 1981, 46, 393.
- [9] I. Hoppe, U. Schöllkopf, M. Nieger, E. Egert, Angew. Chem. Int. Ed. 1985, 24, 1067.
- [10] N. Ando, Y. Yamamoto, J. Oda, Y. Inouye, Synthesis 1978, 688.
- [11] M. Schmidt, R. Amstutz, G. Cross, D. Seebach, Chem. Ber. 1980, 113, 1691.

<sup>&</sup>lt;sup>2</sup>) A crude, crystalline mixture **20a/20b** (m.p. 102–103°) was treated in analogous manner as that obtained from the reaction of cyclopentadiene with dienophile **2**.

<sup>&</sup>lt;sup>3</sup>) 1,4-Di-O-tosyl-2,3-O-isopropylidene-L-threitol in  $\gamma$ -pipecoline was refluxed for 3 h, and then the resulting product was hydrolyzed to afford 14 (m.p. 69–70° from hexane,  $[\alpha]_{D}^{25} = -19.7^{\circ} (c = 1.0, \text{CCl}_4)$ ) in 83% yield.